2. Scientific Approach to Piano Practice

a. The Scientific Method.

This book was written using the scientific skills learned during my 9-year undergraduate-graduate education and 31-year career as a scientist. I worked in fundamental research (I have been granted six patents), materials science (mathematics, physics, chemistry, biology, mechanical engineering, electronics, optics, acoustics, metals, semiconductors, insulators), industrial problem solving (failure mechanisms, reliability, manufacturing), and scientific reporting (published over 100 peer-reviewed articles in most of the major scientific journals). Even after obtaining my Doctorate in Physics from Cornell University, my employers spent over a million dollars to further my education during my employment. This scientific training was indispensable for writing this book, and most pianists would not be able to duplicate my efforts. I explain below why the results of scientific efforts are useful to everybody, not only scientists.

A common misunderstanding is that science is too difficult for artists. This really boggles the mind. The mental processes that artists go through in producing the highest levels of music or other arts are at least as complex as those of scientists contemplating the origin of the universe. There may be some validity to the argument that people are born with different interests in art or science; however, I do not subscribe even to that view. The vast majority of people can be artists or scientists depending on their exposure to each field, especially in early childhood.

Science is a field that specializes in advancing and using knowledge; but this formal definition does not help non-scientists in their daily decisions on how to deal with science. I have had endless discussions with scientists and non-scientists about how to define science and have concluded that the formal definition is too easily misinterpreted. The most useful definition of the scientific method is that it is any method that works. Science is empowerment. Although smart scientists are needed to advance science, anyone can benefit from science. Thus another way of defining science is that it makes previously impossible tasks possible and simplifies difficult tasks. Example: if an illiterate person were asked to add two 6-digit numbers, he would have no way of doing it by himself. However, nowadays, any 3rd grader who has learned arithmetic can perform that task, given a pen and paper. Today, you can teach that illiterate person to add those numbers on a calculator in minutes. Demonstrably, science has made a previously impossible task easy for everyone.

Experience has shown that the scientific method works best if certain guidelines are followed. The first is the use of...

Definitions: Without the precise definitions presented throughout this book, most of the discussions in this book would become cumbersome or ambiguous.

Research: In scientific research, you perform experiments, get the data, and document the results in such a way that others can understand what you did and can reproduce the results. Unfortunately, that is not what has been happening in piano teaching. Liszt never wrote down his practice methods. Nonetheless, a tremendous amount of research has been conducted by all the great pianists. Very little of that had been documented, until I wrote this book.

Documentation and Communication: It is an incalculable loss that Bach, Chopin, Liszt, etc., did not write down their practice methods. They probably did not have sufficient resources or training to undertake such a task. An important function of documentation is the elimination of errors. Once an idea is written down, we can check for its accuracy and remove any errors and add new findings. Documentation is used to create a one-way street in which the material can only improve with time. One finding that surprised even scientists is that about half of all new discoveries are made, not when performing the experiments, but when the results were being written up. It was during the writing of this book, that I discovered the explanation for speed walls. I was faced with writing something about speed walls and naturally started asking what they are, how many there are, and what creates them. It is important to communicate with all other specialists doing similar work and to openly discuss any new research results. In this respect, the piano world has been woefully inadequate. Most books on piano playing don’t even have references and they rarely build upon previous works of others. In writing my first edition book, I learned the importance of properly documenting and organizing the ideas from the fact that, although I knew most of the ideas in my book for about 10 years, I did not fully benefit from them until I finished that book. I then re-read it and tried it out systematically. That’s when I discovered how effective the method was! Apparently, although I knew most of the ingredients of the method, there were some gaps that weren’t filled until I was faced with putting all the ideas in some useful, organized structure. It is as if I had all the components of a car, but they were useless for transportation until a mechanic assembled them and tuned up the car.

Basic theory: Scientific results must always be based on some theory or principle that can be verified by others. Very few concepts stand alone, independently of anything else. Explanations like “it worked for me,” or “I’ve taught this for 30 years” or even “this is how Liszt did it” aren’t good enough. If a teacher had been teaching the procedure for 30 years, s/he should have had plenty of time to figure out why it works. The explanations are often more important than the procedures they explain. For example HS practice works because it simplifies a difficult task. Once this principle of simplification is established, you can start looking for more things like that, such as shortening difficult passages or outlining. The nicest property of basic theory is that we don’t need to be told every detail about how to execute the procedure – we can often fill in the details ourselves from our understanding of the method.

b. Principles of Learning

Isn’t it strange that although elementary schools, colleges, and universities are centers of learning, none of them teach you how to learn? Our discovery in this book that piano teaching has historically not taught practice methods is duplicated in learning centers where learning has not been formally taught. In the course of writing this book, it became clear that the basic principles for learning piano have universal applicability to any learning and project execution, such as sports, warfare, or weeding your yard. So let’s examine these principles.

Learning versus Age. We now recognize the importance of the learning processes that occur between the ages of 0 and 8. Because the brain is developing at this stage, it has an almost limitless ability to learn, when nurtured properly. Conversely, there are examples of below average intelligence resulting from childhood neglect. Initial brain development is influenced by sensory inputs. The main human senses are touch, temperature, hearing, sight, taste, and smell. A newborn first uses the sense of touch: the baby’s cheeks are sensitive to the touch of the mother’s breast and rubbing the cheek elicits the reaction to search for the mother’s breast and to curl the tongue around the nipple to suckle. This ability to curl the tongue is interesting because many adults are unable to curl their tongues although they were obviously able to do it as a baby. This situation is similar to the case of youngsters acquiring absolute pitch effortlessly, but then losing it after their teen years.

The next sense to develop is hearing. Babies can hear at birth and are now routinely tested immediately after birth in order to detect hearing defects as early as possible. Early detection can prevent mental and developmental retardation caused by lack of hearing input because there are methods of replacing hearing by other inputs to stimulate the brain. Hearing at birth is important for recognizing the mother’s voice; in animals, this is a critical survival tool for finding their mothers in large colonies. This is why babies can learn absolute pitch and any other properties of sound instantly with great accuracy. As the baby grows, the hearing related developments change from memory to logic in order to facilitate language learning. In both the memory and logic stages, music plays an important role in brain and emotional development. Thus music precedes language – unlike language, music is a natural built-in brain function that does not need to be taught. Music can create emotions and utilize logic that cannot be expressed in any language; therefore babies can benefit from musical inputs long before they can say “mama” or “dada”.

Babies apparently have more brain cells than adults although the brain mass is much smaller. Brain growth occurs by growth of stimulated cells and elimination of unstimulated ones. Greater stimulation causes more cells to be retained, thus increasing memory and intelligence. Although children between the ages of 2 to 8 can learn many things quickly, they can forget them just as quickly because the brain is changing rapidly. In an adult, the brain is much less adaptable because its wiring system has been finalized. Thus any baby can learn to speak any language well, but adults learning a new language often never learn to pronounce words correctly. Language, musical and athletic developments follow similar paths, indicating that the brain plays the major role. It is now generally accepted that geniuses are not born but made – that Mozart was a genius because he was a musician from early childhood. The implications of this conclusion are enormous, because it applies to any of us. Clearly, brain research is going to be one of the greatest revolutions yet to come.

Learning Physical skills: Learning physical skills, such as playing the piano, is a type of project management. Project management consists of: defining the objective of the project, estimating how much time and effort will be required, determining whether such resources are available, knowing exactly how the project will end, and then creating a plan of action.

Estimating the time it takes to finish the project is often the most difficult part. It is useful to classify projects as short term or long term: skills that can be learned in a few days, or those that require a good fraction of a lifetime to learn. By knowing that a certain project can be finished in couple days, you know that something is wrong if it takes longer – this can prevent you from wasting time because you must immediately look for a better way. Likewise, knowing that a project is going to take a good fraction of a lifetime can ease the frustration if you work hard for a long time and still can not finish it. All successful projects are knowledge based; theory is not enough. There is one class of skills that is especially easy to learn; these are skills that have “learning tricks”. In piano practice we saw that HS and parallel set methods are powerful learning tricks. The plan of action involves simplifying difficult tasks into sub-tasks and executing each sub-task separately. The basic principles are not enough by themselves because project management is knowledge based. For learning piano, the basic principles will teach you HS and segmental practice, but they will not provide the continuity rule, parallel sets, or TO. Clearly, these general principles of project management have universal applicability, but the success of the project still depends on knowledge.

Other Principles: don’t start new sections until the previous is completed, know the maintenance procedures for finished sections, and have a clear definition of project completion.