6. Future Research Topics

The scientific approach ensures that errors are corrected as soon as possible, that all known facts are explained, documented, and organized in a useful way, and that we only make forward progress. The past situation of one piano teacher teaching a very useful method and another knowing nothing about it, or two teachers teaching completely opposite methods, should not occur. An important part of any scientific research is a discussion of what is still unknown and what still needs to be researched. The following is a collection of such topics.

a. Momentum Theory of Piano Playing

Slow play in piano is called “playing in the static limit”. This means that when depressing a key, the force of the finger coming down is the main force used in the playing. As we speed up, we transition from the static limit to the momentum limit. This means that the momenta of the hand, arms, fingers, etc., begin to play important roles in depressing the keys. Of course, force is needed to depress the key, but when in the momentum limit, the force and motion can be out of phase, while in the static limit they are always exactly in phase. In the momentum limit, your finger is moving up when your finger muscles are trying to press it down! This happens at high speed because you had earlier lifted the finger so rapidly that you have to start depressing it on its way up so that you can reverse its action for the next strike. The actual motions are complex because you use the hand, arms, and body to impart and absorb the momenta. This is one of the reasons why the entire body gets involved in the playing, especially when playing fast or loud. Examples of situations where momenta are important are fast trills or tremolos, rapid repetitions or staccatos, and quiet hands play. The swing of the pendulum and the dribbling of the basketball are in the momentum limit, so that the momentum limit is a common occurrence. In piano playing, you are generally somewhere between the static and momentum limits with increasing tendency towards momentum limit with increasing speed.

The importance of momentum play is obvious; it involves many new finger/hand motions that are not needed in static play. Thus knowing which motions are of the static or the momentum type will go a long way towards understanding how to execute them and when to use them. Because momentum play has never been discussed in the literature until now, there is a vast area of piano play for which we have little understanding. Beyond mentioning the importance of momentum, I have little to present at this time. The only useful information to the pianist is that there is a transition from static play to momentum play as you speed up, so that in fast play, the technique will require entirely new skills that you didn’t need at slow play. In fast trills and the quiet hands play, the hand seems to be motionless, but it is not. It is making rapid adjustments in order to accommodate the momenta of the fast moving fingers, and we must learn to apply forces to the fingers that are not in phase with their motions. This is why practicing slow trills every day will not help you to play fast trills. Parallel sets do a much better job because you can immediately start practicing the momentum mode.

b. The Physiology of Technique

We still lack even a rudimentary understanding of the bio- mechanical processes that underlie technique. It certainly originates in the brain, and is probably associated with how the nerves communicate with the muscles, especially the fast muscles. What are the biological changes that accompany technique, or when the fingers are “warmed up”? What is the mechanism of PPI (15. Post Practice Improvement (PPI))? What muscles are most important for playing the piano: the flexors, interossei, or lumbricals? Research on this type of knowledge applicable to piano practice has been rarely conducted and there is no indication that this situation will improve anytime soon. However, there is little question that this type of research is needed if we are to understand the physiology of technique.

c. Brain Research, Using the Subconscious

Brain research will be one of the most important fields of medical research. Efforts at controlling the growth of mental capabilities, especially in childhood, will surely develop. Music should play an important role in such developments because we can communicate aurally with infants long before any other method, and it is already clear that the earlier you start the control process, the better the results.

We are all familiar with the fact that, even if we can play HS quite well, HT may still be difficult. Why is HT so much more difficult? One of the reasons may be that the two hands are controlled by the different halves of the brain. If so, then learning HT requires the brain to develop ways to coordinate the two halves. This would mean that HS and HT practice use different types of brain functions and supports the contention that these skills should be developed separately as recommended in this book. One intriguing possibility is that we may be able to develop HT parallel sets or better schemes that can solve this problem.

Using the Subconscious: We are only beginning to study the many sub-brains we have within our brain and the different ways to use them. We have at least a conscious and a subconscious part. Most people are unskilled at using the subconscious, but the subconscious is important because it controls the emotions, it functions 24 hours a day whether you are awake or asleep, and it can do some things that the conscious cannot do, simply because it is a different kind of brain. A pretty good guess is that for half the human population, the subconscious may be smarter than the conscious. Thus, in addition to the fact that you have an extra brain capability, it doesn’t make sense not to use this part of the brain that might be smarter than your conscious.

The subconscious controls emotions in at least two ways. The first is a rapid, fight or flight reaction – generation of instant anger or fear. When such situations arise, you must react faster than you can think, so that the conscious brain must be bypassed by something that is hardwired and preprogrammed for immediate reaction. We might even classify this as another part of the brain – the part that automatically processes incoming information instantly, whether the input it visual, auditory, touch, smell, etc. Clearly, the auditory part is directly relevant to piano.

The second subconscious function is a slow, gradual recognition of a deep or fundamental situation. Feelings of depression during a midlife crisis might be a result of the workings of this type of subconscious: it has had time to figure out all the negative situations that develop as you age and the future begins to look less hopeful. Such a process requires the evaluation of myriads of good and bad possibilities of what the future might bring, including changes in body chemistry. When trying to evaluate such a future situation, the conscious brain would have to list all the possibilities, evaluate each, and try to remember them. The subconscious functions differently. It evaluates various situations in a non-systematic way; how it picks a particular situation for evaluation is not under your control; that is controlled more by every day events. The subconscious also stores its conclusions in what might be called “emotion buckets”. For each emotion, there is a bucket, and every time the subconscious comes to a conclusion, say a happy one, it deposits the conclusion in a “happy bucket”. The fullness of each bucket determines your emotional state. This explains why people often can sense what is right or wrong or whether a situation is good or bad without knowing exactly what the reasons are (“sixth sense”). Thus the subconscious affects our lives much more than most of us realize. It may control how we feel about piano music or our desire to practice.

Usually, the subconscious goes its own way; you don’t normally control which ideas it will consider, because most of us have not learned how to communicate with it. However, the events encountered in daily life usually make it quite clear which are important factors and the subconscious gravitates towards the important ones. When these important ideas lead to important conclusions, it gets more interested. When a sufficient number of such important conclusions piles up, it will contact you. This explains why, all of sudden, an unexpected intuition will flash through your conscious mind. So the question here is, how can you communicate with the subconscious?

Any idea that is important, or any puzzle or problem that you had tried to solve with great effort, is obviously a candidate for consideration by the subconscious. Thus thinking about why an idea is important is one way to present the problem to the subconscious. In order to solve a problem, the subconscious must have all the necessary information. Therefore it is important to do all the research and gather as much information about the problem as you can. In college, this is how I solved many homework problems that my smarter classmates could not solve. They tried to just sit down, do their assignments, and hoped to solve these more difficult problems. Problems in a school environment are such that they are always solvable with the information given in the classroom or textbook. Thus, you only need to assemble the right parts to come up with the answer. What I did, therefore, was not to worry about being able to solve any problem immediately but to think about it intensely and make sure that I have studied all the course material. If I could not solve the problem right away, I knew that the subconscious would go to work on it, so I could forget about the problem and let the subconscious work on it. The most effective procedure was not to wait until the last minute to try to solve such problems – the subconscious needs time. Some time afterwards, the answer would suddenly pop up in my head, often at strange, unexpected times. They most frequently popped up in the early morning, when my mind was rested and fresh; perhaps the subconscious works best at night, when the brain is not preoccupied with conscious work. Thus, you can learn to present material to the subconscious and to receive conclusions from it. In general, the answer would not come if I intentionally asked my subconscious for it, but would come when I was doing something unrelated to the problem. You can also use the subconscious to recall something you had forgotten. First, try to recall it as hard as you can, and then abandon the effort. After some time, the brain will often recall it for you. Try this when you can’t recall the name of a composition or composer.

We do not yet know how to talk directly with the subconscious. And these communication channels are very different from person to person, so each person must experiment to see what works best. Clearly, you can improve communications with it as well as block the communication channels. Many of my smarter friends in college became frustrated when they found out that I had found the answer when they couldn’t; and they knew they were smarter. That type of frustration can stall the communications within the brain. It is better to maintain a relaxed, positive attitude and to let the brain do its thing. Another important method for making maximum use of the subconscious is to leave the subconscious alone without interference from the conscious brain, once you have presented it with the problem: forget about the problem and engage in sports or go to see a movie or do other things you enjoy, and the subconscious will do a better job because it has its own agenda and schedule. If you practice a difficult passage hard, but get no satisfactory results, and you run out of new hand motions, etc., to try, see if the subconscious can give you new ideas when you practice the next time – part of PPI may be the work of the subconscious!

d. The Future of Piano

The “Testimonials” section gives ample evidence that our new approach to piano practice will enable practically anyone to learn piano to her/is satisfaction. It will certainly increase the number of pianists. Therefore, the following questions become very important: Can we calculate the expected increase in pianists? What will this increase do to the economics of the piano: performers, teachers, technicians, and manufacturers? If piano popularity explodes, what will be the main motivation for such large numbers of people to learn piano?

Piano teachers will agree that 90% of piano students never really learn piano in the sense that they will not be able to play to their satisfaction and basically give up trying to become accomplished pianists. Since this is a well known phenomenon, it discourages youngsters and their parents from deciding to start piano lessons. Since music is generally not a highly paid profession, the economic factor also discourages entry into piano. There are many more negative factors that limit the popularity of the piano (lack of good teachers, high expense of good pianos and their maintenance, etc.), almost all of which are eventually related to the fact that piano has been so difficult to learn. Probably only 10% of those who might have tried piano ever decide to give it a try. Therefore, we can expect the popularity of the piano to increase by 100 times (10X more deciding to study and 10X more successful) if the promise of this book can be fulfilled.

Such an increase would mean that a large fraction of the population in developed countries would learn piano. Since it is a significant fraction, we do not need an accurate number, so let’s pick some reasonable number, say 30%. This would require at least a 10 fold increase in the number of piano teachers. This would be great for students because one of the big problems today is finding good teachers. In any one area, there are presently only a few teachers and the students have little choice. Within a few teacher/student generations, the quality of teachers will improve and become uniformly good, and the teaching methods will be standardized. The number of pianos sold would also have to increase, probably well in excess of 100%. Although many homes already have pianos, many of them are not playable. Since most of the new pianists will be at an advanced level, the demand for good grand pianos will increase by an even larger percentage, possibly more than 300%, and the quality and quantity of digital pianos sold will increase dramatically.

Is an increase of 100 times in the population of pianists reasonable? What would they do? They certainly can’t all be concert pianists and piano teachers. The very nature of how we view piano playing will change. First of all, the piano will, by then, become a standard second instrument for all musicians (regardless of what instrument they play), because it will be so easy to learn and there will be pianos everywhere. The joy of playing piano will be enough reward for many. The zillions of music lovers who could only listen to recordings can now play their own music – a much more satisfying experience. As anyone who has become an accomplished pianist will tell you, once you get to that level, you cannot help but compose music. Thus a piano revolution should ignite an explosion in composition, and new compositions will be in great demand because many pianists will not be satisfied with playing “the same old things”. Pianists will be composing music for every instrument because of the development of keyboards with powerful software and every pianist will have an acoustic piano and an electronic keyboard, or a dual instrument (see below). The large supply of good keyboardists would mean that entire orchestras will be created using keyboard players. Another reason why the piano would become universally popular is that it will be used by parents as a method for increasing the IQ of growing infants.

With such huge forces at work, the piano itself will evolve rapidly. First, the electronic keyboard will increasingly intrude into the piano sector, quickly obsolescing acoustic uprights. The shortcomings of the electronic pianos will continue to decrease until the electronics become musically indistinguishable from the acoustics, and possibly much better. Regardless of which instrument is used, the technical requirements will be the same. By then, the acoustic pianos will have many of the features of the electronics: they will be in tune all the time (instead of being out of tune 99% of the time, as they are now – see Gilmore), you will be able to change temperaments by flicking a switch, and midi capabilities will be easily interfaced with the acoustics. The acoustics will never completely disappear because the art of making music using mechanical devices is so fascinating. In order to thrive in this new environment, piano manufacturers will need to be much more flexible and innovative – future piano manufacturers will look nothing like those we have today.

Piano tuners will also need to adapt to these changes. All pianos will be self-tuning, so income from tuning will decrease slowly, over several generations. However, pianos in tune 100% of the time will need to be voiced more frequently, and how hammers are made and voiced will need to change. It is not that today’s pianos do not need as much voicing, but when the strings are in perfect tune, any deterioration of the hammer becomes the limiting factor to sound quality and becomes readily noticeable. Piano tuners will finally be able to properly regulate and voice pianos instead of just tuning them; they can concentrate on the quality of the piano sound, instead of simply getting rid of dissonances. Since the new generation of more accomplished pianists will be aurally more sophisticated, they will demand better sound and keyboard touch. The greatly increased number of pianos and their constant use will require an army of new piano technicians to regulate and repair them. Even the electronics will need repair, maintenance, and upgrading. Piano tuners will also be much more involved in adding and maintaining electronic (midi, etc.) capabilities to acoustics. Thus most people will either have a hybrid or both an acoustic and electronic piano.

e. The Future of Education

The Internet is obviously changing the nature education. One of my objectives in writing this book on the WWW is to make education more cost effective. Looking back to my primary education and college days, I marvel at the efficiency of the educational processes that I had gone through. Yet the promise of much greater efficiency via the internet is staggering by comparison. Here are some of the advantages of internet based education:

  1. No more waiting for school buses, or running from class to class; in fact no more cost of school buildings and associated facilities.

  2. No costly textbooks. All books are up-to-date, compared to many textbooks used in universities that are over 10 years old. Cross referencing, indexing, topic searches, etc., can be done electronically. Any book is available anywhere.

  3. Many people can collaborate on a single book, and the job of translating into other languages becomes very efficient, especially if a good translation software is used to assist the translators.

  4. Questions and suggestions can be emailed and the teacher has ample time to consider a detailed answer and these interactions can be emailed to anyone who is interested; these interactions can be stored for future use.

  5. The teaching profession will change drastically. On the one hand, there will be more one-on-one interactions by email, video-conferencing, and exchange of data (such as audio from a piano student to the teacher). Any teacher can interact with the “master text book center” to propose improvements that can be incorporated into the system. And students can access many different teachers, even for the same topic.

  6. Such a system would imply that an expert in the field cannot get rich writing the best textbook in the world. However, this is as it should be – education must be available to everyone at the lowest cost. Thus when educational costs decrease, institutions that made money the old way must change and adopt the new efficiencies. Wouldn’t this discourage experts from writing textbooks? Yes, but you need only one such “volunteer” for the entire world; in addition, the internet has already spawned enough such free systems as Linux, browsers, Adobe Reader, etc., that this trend is not only irreversible but well established.

  7. This new paradigm of contributing to society may bring about even more profound changes to society. One way of looking at business as conducted today is that it is highway robbery. You charge as much as you can regardless of how much or how little good your product does to the buyer. In an accurate accounting paradigm, the buyer should always get his money’s worth. That is the only situation in which that business can be justified in the long run. This works both ways; well-run businesses should not be allowed to go bankrupt simply because of excessive competition. In an open society in which all relevant information is immediately available, we can have financial accounting that can make pricing appropriate to the service. The philosophy here is that a society consisting of members committed to helping each other succeed will function much better than one consisting of robbers stealing from each other. In particular, practically all basic education should be essentially free. This does not mean that teachers will lose their jobs because teachers can greatly accelerate the learning rate and should be paid accordingly.

It is clear from the above considerations that free exchange of information will transform the educational (as well as practically every other) field. This book is one of the attempts at taking advantage of these Utopian dreams, together with Connexions, Curriki, Qoolsqool, and others with similar objectives.